Кирилл Автушенко (КОМПЭЛ)

СЕДЬМОЕ ПОКОЛЕНИЕ IGBT OT IR: СНИЗИМ ПОТЕРИ ПРИ ПЕРЕКЛЮЧЕНИИ

Выбор **IGBT**, являющегося популярным решением для инверторов тока и сварочного оборудования, - это всегда поиск компромисса между уменьшением потерь проводимости и улучшением частотных характеристик. Компания **International Rectifier (IR)** предлагает новое (седьмое — **G7/Gen7)** поколение **IGBT**, обладающих отличными частотными характеристиками при обеспечении низких потерь проводимости. Области применения новых изделий: корректоры коэффициента мощности, инверторы, драйверы моторов и сварочные аппараты.

сновной вопрос, который возникает у разработчиков, не применявших ранее IGBT — в каком случае применять их, а где стоит использовать классические MOSFET. Для того, чтобы разобраться в этом вопросе, необходимо провести аналогию между параметрами IGBT и MOSFET. Итак, рассмотрим основные параметры транзисторов, их функциональное соответствие и типичные значения.

 \mathbf{V}_{ECS} (Collector-to-Emitter Breakdown Voltage) — максимально-допустимое напряжение «коллектор-эмиттер». Является аналогом параметра \mathbf{V}_{DS} МОSFET-транзисторов. Значение этого параметра для IGBT находится в пределах 300...1500 В.

 ${f I}_{\rm C}$ (Continuous Collector Current) — максимальный ток коллектора, аналог тока стока ${f I}_{\rm D}$. Диапазон значений для ${f IGBT}-10...200$ A.

 \mathbf{V}_{GE} (Gate-to-Emitter Voltage) — максимально допустимое напряжение «затвор-эмиттер», аналог параметра $\mathbf{V}_{\mathrm{GS}}.$ Значения \mathbf{V}_{GE} находятся в пределах $\pm 20\dots \pm 30$ В.

 $\mathbf{V}_{CE(on)}$ (Collector-to-Emitter Saturation Voltage) — напряжение насыщения «коллектор-эмиттер», определяет потери проводимости в транзисторе, аналог $\mathbf{R}_{ds(on)}$ для MOSFET. Диапазон значений $\mathbf{V}_{cross} = 1.0...2.5$ В.

значений $V_{CE(on)}^{(ascon)}$ 1,0...2,5 В. E_{ts} (Total Switching Loss) — полные потери на переключения транзистора (измеряется в мкДж). Аналогом у MOSFET является заряд затвора $Q_{scon}^{(ascon)}$

P_d (*Maximum Power Dissipation*) — максимально возможная рассеиваемая мощность. Как и в случае MOSFETтранзисторов, значение данного параме-

тра в значительной степени определяется типом корпуса транзистора.

Особенностью IGBT-транзисторов является снижение значений параметра, являющегося эквивалентом сопротивления канала MOSFET с увеличением тока, протекающего в IGBT-транзисторе. Воспользуемся конкретным примером сравнения двух различных MOSFET с IGBT, наглядно проиллюстрированном на рис. 1.

Из графика видно, что при токах свыше 33 A значение эквивалента $R_{\rm ds(on)}$ становится ниже реальных значений $R_{\rm ds(on)}$ для MOSFET с напряжением 150 B, что позволяет получить дополнительную эффективность при использовании IGBT. В случае использования MOSFET с напряжением 200 В при любых токах потери в IGBT-транзисторе значительно ниже.

Однако наравне с выделенными выше преимуществами IGBT-транзисторы проигрывают MOSFET по быстродействию. В отличие от MOSFET, способных работать на частотах в несколько мегагерц, пределом IGBT является порог в 30...40 кГц с существенным ухудшением токовой характеристики на частотах более 20 МГц. Данный факт иллюстрирует рисунок 2.

Классификация IGBT компании IR

В зависимости от применяемой технологии изготовления все IGBT-транзисторы компании IR можно разделить на четыре поколения — G4...G7, топология которых приведена на рисунке 3

Применение различных технологий производства позволяет добиться требуемого соотношения основных параметров транзисторов, что определяет их области применения. Как видно на рисунке, наряду с улучшенными характеристиками новые поколения транзисторов обладают и большей стоимостью. Это связано с увеличением общего числа слоев в структуре транзистора, а также усложнением технологических процессов их создания.

Качественную оценку основных характеристик транзисторов на напряже-

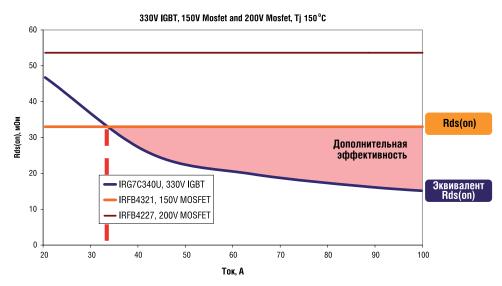


Рис. 1. Cpabhehue IGBT и MOSFET для различных рабочих токов

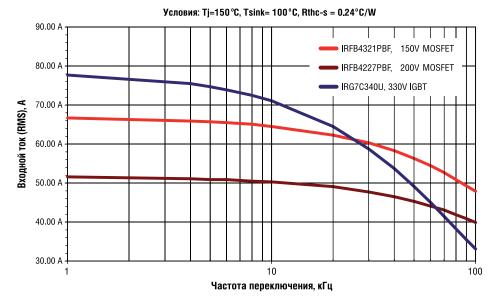


Рис. 2. Сравнение рабочих токов IGBT и MOSFET на различных частотах

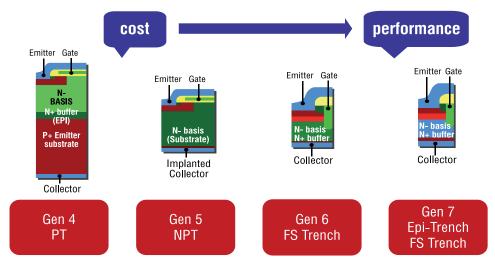


Рис. 3. Топология различных поколений IGBT

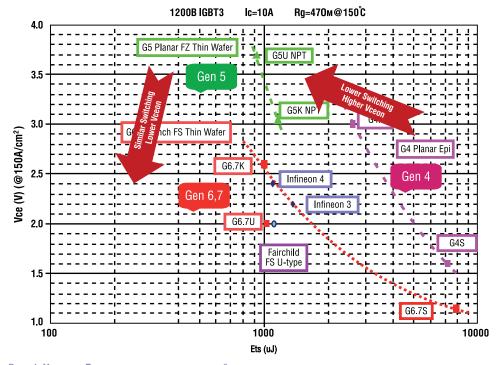


Рис. 4. $\mathbf{V}_{\mathtt{CE(on)}}$ vs. $\mathbf{E}_{\mathtt{ts}}$ для различных поколений транзисторов

ние 1200 В можно сделать, исходя из рис. 4.

Из рисунка видно, что переход от поколения G4, изготавливаемого по punch-through (PT) технологии, к G5, изготавливаемому по non-punch-through (NPT) технологии, сопровождается девятикратным уменьшением потерь на переключение (параметр E_{ts}) и увеличением потерь на проводимость в 1,5 раза. Таким образом, поколение G5 больше подходит для применения в схемах с более высокими рабочими частотами, чем G4.

Переход к новым технологиям FSTrench (G6) и Epi-Trench (G7), позволил создать IGBT, которые совмещают в себе достоинства предыдущих поколений и обладают низкими значениями \boldsymbol{E}_{ts} без увеличения потерь проводимости. Кроме того, падение рабочего тока транзистора с увеличением частоты у нового поколения G7 выражено не так ярко, как у транзисторов предыдущих поколений или у IGBT-транзисторов других производителей. Эти выводы можно сделать из рисунка 5, на котором приведена зависимость тока от частоты переключения для различных семейств транзисторов.

Представленные поколения широко представлены на рынке электронных компонентов и перекрывают практически все области применения IGBT (см. таблицу 1).

Строка, расположенная ниже обозначения технологий изготовления транзисторов, определяет тип транзистора с точки зрения его частотных характеристик. Максимальные рабочие частоты, а также значения параметров $V_{\text{CE(on)}}$ и E_{ts} для каждой группы можно найти в таблице 2.

Литера «К» в таблице 1 обозначает не скоростную группу транзистора, а служит отметкой о способности транзистора сохранять работоспособность в условиях короткого замыкания (Sort Circuit Safe Operation Area — SCSOA). Данный термин введен компанией IR для транзисторов, которые имеют дополнительную защиту против короткого замыкания. Данное свойство является крайне полезным при работе транзисторов на удаленную индуктивную нагрузку (двигатель). В этих условиях длинные линии подвержены сильным внешним помехам и случайным механическим повреждениям, которые могут привести к короткому замыканию выводов транзистора.

IR предлагает три степени защиты IGBT от короткого замыкания, которые определяются допустимой длительностью состояния КЗ (10 мкс, 6 мкс, 3 мкс), при котором, транзистор сохраняет работоспособность после устранения условий КЗ. Наличие подобной защиты приводит к незначи-

Таблица 1. IGBT разных технологий

	PT			NPT		FS Trench		Epi Trench					
	S	F	U	W	K	U	W	K	K	U	S	F	U
Приборостроение		X	X		X	X		X		X		X	X
Пром. Двигатели					X			X	X				
ККМ				X		X	X			X			
ИБП	X		X	X		X	X			X	X		X
Солнечные батареи	X		X	X		X	X			X	X		X
Сварка	X		X			X				X	X		X
Индукционный нагрев			X							X			X
Интерфейсы	X										X		
Источники питания			X	X		X	X			X			X

^{*} красным цветом выделены изделия, находящиеся в разработке.

тельному (0,1...0,2 B) увеличению параметра $V_{\text{CE(on)}}$.

Новинки в семействе G7

Компания IR постоянно совершенствует IGBT как на уровне улучшения характеристик кристаллов, так и путем внедрения инновационных технологий корпусирования. Новая номенклатура транзисторов седьмого поколения, которые будут доступны в скором времени, приведена в таблице 3.

Номенклатура транзисторов G7 напряжением на 1200 В представлена в таблице 4. Все транзисторы данной категории являются ультрабыстрыми, нормированы на ток от 20 до 50 А и находят применение в источниках бесперебойного питания, повышающих преобразователях напряжения и системах индукционного нагрева.

Для расшифровки наименования транзисторов можно воспользоваться справочником по системе нумерации, приведенным на рис. 6.

Области применения IGBTтранзисторов G6 и G7

Как видно из таблиц 3 и 4, основными областями применения IGBTтранзисторов седьмого поколения являются корректоры коэффициента мощности, инверторы, драйверы моторов и сварочные аппараты.

Таблица 3. **Частотные характеристики IGBT**

таолица 5. Тастотные характеристики исст									
Наименование	Напр., В	Напр., В Іс (ном) А V _{се(ом)} ,		Скорость	Применение				
IRG7PC35SD	600	40	1,2	Стоуулорт	50/60Гп				
IRG7PC50SD	000	90	1,2	Стандарт	50/ 001ц				
IRGC4271B		75	1,7						
IRGC4273B	650	100	1,7	Ультра-быстрые, SCSOA	ИБП, солн. бат., сварка, инд. нагрев				
IRGC4274B		150	1,7		ирп, солн. оат., сварка, инд. нагрев				
IRGC4275B		200	1,7						
IRG7CH54K10B-R		50	1,8						
IRG7CH75K10B-R		100	1,9	Ультра-быстрые, SCSOA	Промышленные двигатели				
IRG7CH81K10B-R	1200	150	1,95						
IRG7CH73UB-R		75	1,7		ИБП, солн, бат., сварка				
IRG7CH75UB-R		100	1.7	Ультра-быстрые					

Таблица 2. **Частотные характеристики IGBT**

Название группы	Литера	Fsw, κΓц	Vce(on), B	Ets, мДж
Стандарт (Standart)	S	<1	1,2	6,95
Быстрые (Fast)	F	18	1,4	2,96
Ультрабыстрые (Ultrafast)	U	830	1,7	1,1
Сверхбыстрые (Warp)	W	>30	2,05	0,34

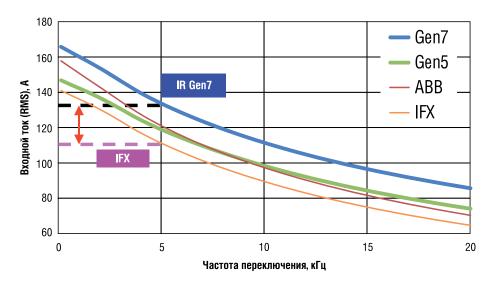


Рис. 5. $\mathbf{V}_{\mathtt{CE(on)}}$ vs. $\mathbf{E}_{\mathtt{ts}}$ для различных поколений транзисторов

Корректоры коэффициента мошности.

Использование IGBT в схемах ККМ рекомендуется при выходных мощностях свыше 1 кВт. Рабочие частоты схемы составляют 20...25 кГц,

что определяет скоростные характеристики транзисторов. Применение 600 В IGBT-транзисторов типов U и W вместо классических MOSFET позволяет добиться уменьшения потерь более чем на 50%.

IRG7CH81UB-R

■ 0630PЫ

Таблица 4. IGBT G7 на напряжение 1200В

Наименование	Напр., В	Іс (ном) А	$V_{CE(ON)}$, B	Скорость	Применеие
IRG7PC35UD1-EP IRG7PC35UD1PBF		20			Индукц. нагр.*
IRG7PC35UD-EP			1,8	Ультрабыстрые	ИБП*, СБ*
IRG7PC35UDPBF					HDH , CD
IRG7PHC35U-EP					Повыш. преобр.*
IRG7PH35UPBF					
IRG7PH42UD1-EP IRG7PH42UD1PBF	1200	30	1,7	Ультрабыстрые	Индукц. нагр.
IRG7PH42U-EP					ИБП, СБ
IRG7PH42UPBF					иып, сы
IRG7PH42UD-EP					Повыш. преобр.
IRG7PH42UDPBF					пресор.
IRG7PH46UD-EP		40	1,7	Ультрабыстрые	ИБП, СБ
IRG7PH46UDPBF					, ,
IRG7PH46U-EP				r r	Повыш. преобр.
IRG7PH46UPBF		50	4.5	V	
IRG7PSH50UDPBF					ИБП, СБ
IRG7PH50U-EP IRG7PH50UPBF		50	1,7	Ультрабыстрые	Повыш. преобр.

^{*} ИБП — источники бесперебойного питания * СБ — солнечные батареи

Таблица 5. Двухканальные драйверы и их характеристики

Vсмещ., В	I-sink, мА	I-source, MA	Особенности	SOIC8	DIP8	MLPQ4x4	SOIC14	DIP14	SSOP24
200	600	290	HIN, LIN/N	IRS2003S	IRS2003	IRS2003M	_	_	_
200	600	290	IN, SD/N	IRS2004S	IRS2004	IRS2004M	_	_	_
600	600	290		IRS2103S	IRS2103	IRS2103M	_	_	_
	2300 1900 600 290	1900	HIN, LIN/N	IRS2183S	IRS2183	-	-	-	_
			IRS2108S	IRS2108	-	-	-	_	
	600 290			IRS2104S	IRS2104	IRS2104M	_	-	_
	2300	1900	IN, SD/N	IRS2184S	IRS2184	-	-	-	_
	600	290		IRS2109S	IRS2109	-	_	-	_
	600	290	IN, no SD	IRS2111S	IRS2111	IRS2111M	_	-	_
	600	290	HIN, LIN	IRS2308S	IRS2308	IRS2308M	_	-	_
	600	290	IIIN, LIN	IRS2304S	IRS2304	IRS2304M	_	_	_
600	3000	2000	DSH/L пассивное смещ.	_	-	_	_	_	IR2114SS
3000	3000	2000	DSH, HSL активное смещ.	_	_	_	-	-	IR21141SS
	600 290	HIN LIN /N	_	_	IRS21084M	IRS21084S	IRS21084	_	
	2300	1900	HIN, LIN/N	_	_	IRS21834M	IRS21834S	IRS21834	_
	600	290		-	-	IRS21094M	IRS21094S	IRS21094	_
	2300	1900	IN, SD/N	-	-	IRS21844M	IRS21844S	IRS21844	-
	600	290		-	-	IRS21091M	IRS21091S	IRS21091	-
	600	290	HIN, LIN/N	IRS2608DS	IRS2608D	-	-	-	-
	600	290	IN, SD/N	IRS2609DS	IRS2609D	-	-	-	-
1200	3000	2000	DSH/L пассивное смещ.	-	_	-	-	-	IR2214SS
1200	3000	2000	DSH, HSL активное смещ.	-	-	_	_	_	IR22141SS

IN — (input) — один вход, управляющий обоими плечами;
HIN — (hight input) — отдельный вход управления верхним плечем;
LIN — (Low input) — отдельный вход управления нижним плечем;
DT — (Dead time) — состояние когда оба плеча выключены;

/N — (negativ) — низкий активный уровень сигнала; SD — (Shut Down) — вход отключения питания.

st Повыш. преобр. - повышающий преобразователь

^{*} Индукц. нагр. — индукционный нагрев

На рисунке 7 приведены зависимости максимального выходного тока IGBT, работающих в корректоре коэффициента мощности, от частоты переключения. Очевидно преимущество нового семейства на частотах до 50 кГц.

Инверторы

Функциональные схемы инверторов приведены на рисунке 8.

Первые два типа схем применяются при напряжении шины питания ± 400 В и мощностью до 3 кВт (а) и более 3 кВт (б). Транзисторы для данной схемы могут иметь рабочее напряжение 600 В. Переключение разных плечей в схеме (а) осуществляется с различными частотами: верхнее плечо — 20 кГц, нижнее — 50 или 60 Гц (определяется частотой электросети). Поэтому требуется использовать транзисторы различных частотных характеристик, например групп U и S.

Полумостовая (в) схема применяется при напряжении шины питания $\pm 600~\mathrm{B}$ и выходных мощностях более $3~\mathrm{kBr}$. В этом случае переключение транзисторов осуществляется на частоте $20~\mathrm{k}$ Гц, и в схему следует устанавливать транзисторы с напряжением $1200~\mathrm{B}$ группы U. Транзисторы G7, изготовленные по ЕріТгепсh-технологии, оптимизированны специально под применение в составе инверторных схем, в которых необходимо обеспечение минимальных значений $V_{\mathrm{CE}(n)}$ и E_{IS} .

Сварочные аппараты

Сварочные аппараты подразделяются на две группы по типу выходного тока: с постоянным или с переменным. Функциональные схемы данных аппаратов приведены на рисунке 9.

Аппараты состоит из полномостового ИП и выходного инвертора (только в структуре (6)), принцип работы которых мы рассмотрели выше. Выбор транзисторов осуществляется по аналогичным критериям.

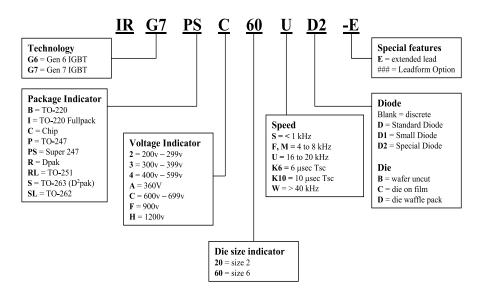


Рис. 6. Система наименований IGBT G6 и G7

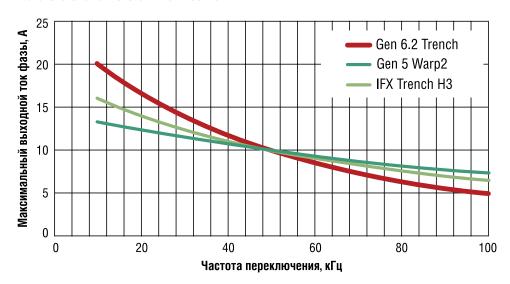


Рис. 7. **Кривые тока IGBT и их характеристики при работе в схеме ККМ**

Системы управления двигателем

Условия работы транзисторов в системах управления двигателем (индуктивная нагрузка) отличаются от рассмотренных выше примеров. И если в схеме ККМ IGBT G6 / G7 проигрывали своим предшественникам на высоких

частотах, то при управлении двигателем картина несколько меняется, что иллюстрируется рисунком 10.

Если взять за основу технологии изготовления транзисторов и проанализировать графики, то можно заключить, что:

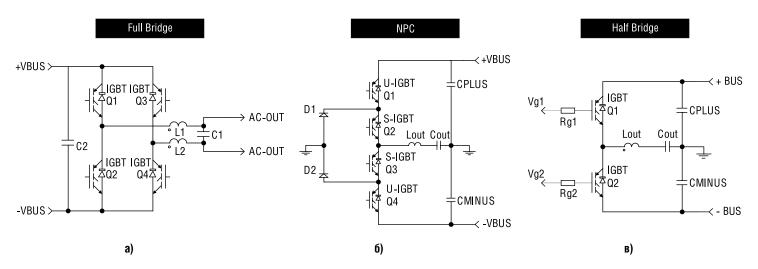


Рис. 8. Функциональные схемы полномостового (a), NPC (neutral point clamped) (б) и полумостового (в) инверторов

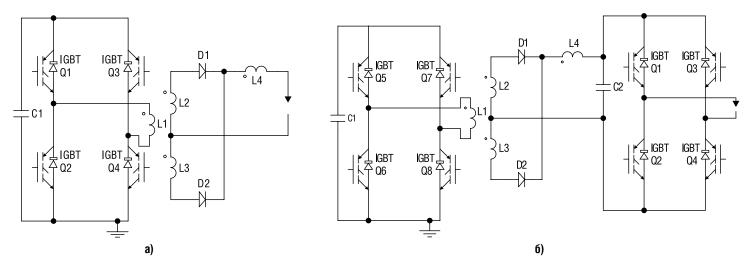


Рис. 9. Функциональная схема сварочного аппарата постоянного (а) и переменного (б) тока

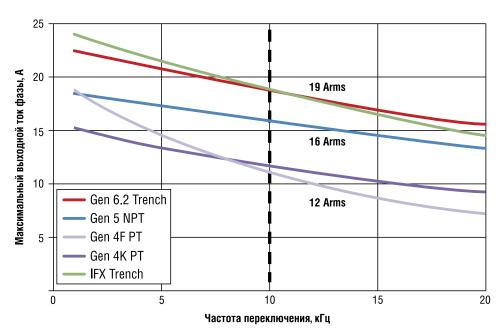


Рис. 10. **Кривые тока фазы и характеристики IGBT при работе в схеме управления двигателем**

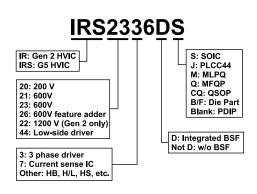


Рис. 11. Система партнамберов IGBT-драйверов

- Trench-IGBT обладают большим значением $V_{\text{CE(on)}}$, но более низкими значениями E_{ON} и E_{OFF} , что приводит к уменьшению потерь в сравнении с IFX;
- Trench-IGBT обеспечивают более высокий ток на частоте 10 кГц;
- NPT-транзисторы обладают зоной SCSOA шириной 10 мкс.

Драйвера IGBT

Для правильного обеспечения закрытия и открытия IGBT-транзисторов необходимо применение специальных высоковольтных микросхем-драйверов (HVIC — High Voltage Integrated Circuit). Они позволяют создать требуемый перепад напряжения между коллектором, находящимся под напряжением несколько сотен вольт, и затвором. Кроме того, драйвера обеспечивают высокий ток (несколько ампер) для быстрой перезарядки паразитных емкостей транзистора, что обеспечивает меньшие потери энергии при переключении транзисторов.

Компания IR предоставляет широкий спектр драйверов IGBT-транзисторов, которые рассчитаны на различное число управляющих каналов (как входных, так и выходных). Самые простые из них — одноканальные микросхемы, предназначенные для управления одним транзи-

стором в составе ККМ, а самые сложные (семиканальные) — способны управлять всеми транзисторами, входящими в состав схем управления двигателями или многофазными инверторами. Драйверы рассчитаны на различные управляющие напряжения и токи затворов транзисторов.

В таблице 5 приведены характеристики и особые функции двухканальных драйверов. Красным цветом выделены позиции, планируемые к выпуску.

Для удобства потребителей наименование микросхем драйверов подчинено системе (*part numbering system*), представленной на рис. 11.

Заключение

Седьмое поколение (Gen7) IGBT от компании International Rectifier совмещает в себе низкие значения $V_{\text{CE(on)}}$ и E_{ts} , что позволяет использовать их как в «быстрых», так и в «медленных» частях электрических схем, добиваясь высокого КПД при узкой номенклатуре применяемых компонентов.

Компания КОМПЭЛ является официальным дистрибьютором IR, и в нашем параметрическом каталоге по адресу http://catalog.compel.ru/igbt/list, вы можете найти подходящий по параметрам IGBT-транзистор, просмотреть документацию и получить информацию о наличии на складе и цене конкретного IGBT.

Литература

1. VolkerSchendel, Harald Reichert. Материалы семинара IGBTs & Gate Driver ICs", IR, 2011 г.

Получение технической информации, заказ образцов, поставка – e-mail: power.vesti@compel.ru